This paper not to be cited without prior reference to the author.

International Council for the Exploration of the Sea.

C.M. 1980/G:42 Demersal Fish committee

The recent changes in fishing pattern in Icelandic waters and their effects on the yield of cod and haddock stocks.

Ъy

Digitalization sponsored by Thünen-Institut

Sigfús A. Schopka Marine Research Institute Reykjavík, Iceland.

Abstract

In this paper changes in fishing pattern due to the increase in mesh size combined with other fishing regulations in recent years are described. The estimated increase in spawning stock biomass per recruit is 85% for cod and 46% for haddock. The estimated increase in the maximum yield per recruit is 14% for cod and 8% for haddock. In terms of catch the yearly gain using average recruitment figures is about 55 thousand tons of cod and 5 thousand tons of haddock.

Introduction

In 1975 Iceland extended its fishing limits to 200 nautical miles. Simultanously and later on a series of strict conservation measures have been introduced. In the 1976 the mesh size in bottom trawls was increased to 135 mm and from 1 February in 1977 the mesh size in trawl codend was again increased to 155 mm. The minimum landing size for cod and saithe increased to 50 cm and

for haddock to 45 cm. This corresponded to 50% retention length for these species. Some areas off the NW-, N- and E- coasts of the island where small cod inhabit have in recent years, been closed permanently against trawling. In other areas fishing can be banned at a short notice if the numbers of small and undersized fish exceeds a certain maximum proportion of catch in that area. This amount depends on species and year class strength. Such a temporary box closure is valid for at least seven days and can if necessary been prolonged. Furthermore the fishing of the trawlers which mainly exploit cod of age groups 4-7 has been restricted heavily during the summer months. The effects on the exploitation pattern of each of the above-mentioned regulations separately are a complicated matter and no attempt have been made to evaluate it that way. Therefore this paper will only deal with the changes in fishing pattern caused by the combined regulations in force.

Material and methods

Exploitation patterns have been calculated by using the virtual population technique. The basic data i.e. numbers of cod and haddock landed of each age are the same as presented in the last North Western Working Group Report (Anon 1976b). Data for the most recent years (1976-1979) are based on Ice-landic age length measurements and have been prepared in the same manner as the older data. (Table 1 and 6). As usual natural mortality coefficient of M= 0.2 has been used.

Recent changes in fishing effort on different age groups are from the available effort data not fully known. Therefore the input fishing mortality values for 1979 are based mainly on F values which generate approximately the year class strength which are known from other sources especially the young gadoid surveys (Pálsson and Malmberg 1978, and Pálsson pers. comm.) and to some extent to 0-group survey results (Anon. 1975, 1976a) but also taking into account the known trends in fishing effort.

- 2 -

Results

Cod

As shown in table 1 the catch in numbers figures for the youngest age groups have changed after 1976. During the period 1971-1976 the average numbers of 3 years old cod landed are 21.2 million fish and for 4 years old cod 35.8 million fish. For the same age groups the numbers are 5.0 million fish and 30.2 million fish respectively during 1977-1979 period.

Numbers present in the stock at beginning of the year indicate that year classes have been rather stable with an average value of 225 million 3 year old cod. The weakest year class in the relevant period is the 1974 year class which is about one fourth of the size of the strong 1976 year class (Table 2).

The total stock biomass (Table 3) declined from 1900 thousand tons in 1960 to 1500 thousand tons in 1965. Then it increased again to 2000 thousand tons in 1969 due to the recruitment of the strong 1964 year class to the stock connected with immigrants from Greenland waters. During 1970-1975 the stock biomass showed a drastic decline even though good year classes recruited to the stock. In 1975 the total stock biomass was at the lowest level of only 1160 thousand tons. The stock is recovering and in the beginning of 1980 it is estimated to be about 1550 thousand tons.

The spawning stock has shown similar trends. In 1960 the spawning stock biomass (7+) was 750 thousand tons. It then declined to 240 thousand tons in 1967. Due to immigration of mature cod from Greenland waters, the spawning stock biomass increased again to 700 thousand tons in 1970. From 1970 it declined drastically to only 150 thousand tons in 1976 and during the following years it was at very low level below 200 thousand tons. This year (1980) the strong 1973 year class recruited to the spawning stock and the spawning stock biomass is estimated to be about 300 thousand tons at present.

Looking at the fishing mortality rates (Table 4) there has been as expected a sharp decline in fishing effort on the youngest age groups of cod in recent years. Bearing in mind that most of the fishing regulations in force at present where introduced in 1976 and 1977 it is practical to compare the changes in the exploitation pattern by periods i.e. 1971-1975 period on the one hand to the 1977-1979 period on the other hand when the effects of the expected changes have to some extent passed through. The changes in fishing pattern are as follows:

Age	Average fishir period 1971 - 1979	percentage reduction in F	
3	0.112	0.025	78
4	0.313	0.204	35
5.	0.493	0.372	25
6	0.557	0.504	10
7+	1.045	0.986	6

As can be seen from the table the fishing mortality during the 1977-1979 period on 3 year old cod is only one fifth and on 4 years old cod two third of that of the former period in view. For these two different exploitation pattern yield per recruit curves were calculated (Fig. 1). The maximum yield for the present exploitation pattern is 1.92 kg per recruit compared with the maximum yield of 1.68 kg per recruit for the 1971-1975 exploitation pattern.

Fig. 2. shows the spawning biomass per 3 years old recruit plotted against varying fishing mortality on age groups subject to maximum exploitation for the fishing patterns of both periods. This shows that the present exploitation pattern will stabilize the spawning stock biomass at about 315 thousand tons by assuming an average recruitment compared to only 170 thousand tons for the 1971-1975 average exploitation pattern. The increase by present F is therefore 85%. If the present fishing effort would be reduced to give the maximum yield per recruit (F = 0.5) this would in the long term almost double the catch rate and give the possibility for more than doubling the spawning stock biomass (780 thousand tons).

- 4 -

Haddock

Comparing the numbers landed by age (Table 5) in the 1971-1975 period with the 1977-1979 period there has been a sharp reduction in landings of young haddock as expected. In the first period 1.3 millions 2 years old haddock were on the average annually landed but in the later period the average yearly catch was only 0.1 million 2 years old fish. Furthermore there has been a great reduction in the landings of 3 years old haddock from 9.6 million fish annually in the 1971-1975 period to only 1.4 million fish annually in the 1977-1979 period.

Table 6 which demonstrates the stock in numbers in beginning of the year indicates somewhat more fluctuations in the year class strength of haddock than of cod. The average year class strength during the period 1962-1978 was 66 million as 2 year old haddock. The 1969 year class which is the weakest year class in the relevant period is about one fifth of the size of the strong 1976 year class.

In 1962 the total stock biomass (Table 7) reached a maximum of 450 thousand tons. This high level of stock abundance was mainly based on two outstanding year classes from 1956 and 1957. The total stock then declined due to poorer recruitment combined with high exploitation rate on the younger age groups. In 1971 the total stock biomass had decreased to a minimum of 140 thousand tons. Since then the stock has been increasing especially in 1978 and 1979 when the good 1976 and 1977 year classes recruited to the stock.

The spawning stock biomass (4+) has shown similar trends. From the maximum of 350 thousand tons in 1962 it declined to only 70 thousand tons in 1973. In recent years the spawning stock has been increasing and is estimated to be about 230 thousand tons in the beginning of 1980.

From table 8 it is obvious that a drastic decline in fishing effort on the younger age groups of haddock has taken place in recent years as expected. Comparing the fishing pattern during the period 1971-1975 to period 1977-1979 the changes are as follows:

	Average fishi	Average fishing mortalities								
í.	period	period	reduction							
Age	1971 - 1975	1977 - 1979	in F							
2	0.029	0.002	93							
3	0.182	0.032	82							
4	0.470	0.169	64							
5	0.755	0.410	46							
6+	0.860	0.804	7							

Actually the change in the exploitation pattern on haddock corresponds approximately to an increase of age at first capture by 1.0 year. From Fig. 3 it can be seen that the maximum yield per 2 years old recruit is 1.05 kg for the present exploitation pattern whereas the maximum yield for 1971-1975 exploitation pattern is somewhat lower (0.97 kg/2 years old recruit).

Fig. 4. shows the spawning stock biomass per 2 years old recruit plotted against fishing mortality on age groups subject to maximum exploitation for both fishing patterns. Comparing the both exploitation patterns the present one will stabilize the spawning stock biomass at about 190 thousand tons by assuming an average recruitment whereas the 1971-1975 average fishing pattern would have stabilized the spawning stock biomass at about 130 thousand tons.

Discussion and conclusions

Conservation measures which have been introduced in recent years in order to protect overexploitation on young fish in the waters around Iceland show that numbers of small and undersized fish caught, have been drastically reduced. Even though most of these regulations as the increase in mesh size to 155 mm in trawl codend has been put into force in 1976 and 1977 and therefore the final conservation effects are not yet fully known it is already obvious that there have been notable changes in the exploitation pattern on the young fish. Age composition data and length measurements for all gears in use show reduction in catches of young fish which can only be explained as a result of different fishing regulations because known survey estimates suggest that year class strength in recent years is at least at or above the long-term average.

There are some difficulties in estimating the changes in fishing effort in recent years. Box closures, mesh size increase, changes in the composition of the fishing fleet and gears in use make the estimation of the true fishing effort very complicated. In order to avoid complicated calculations which would hardly give more reliable results the input F values for 1979 have been chosen after a series of runs by different input F values to generate approximately the year class strength which are known from other sources such as 0-group survey results and young gadoid surveys and known effort changes and cpue information available. Though input F's for the last year of observation are never quite reliable it is thought that the 1977-1979 average fishing pattern presented here is a fairly true estimate on the development which has taken place most recently. The present management obtions on cod has only decreased the effort on the younger agegroups and no marked change is known to have taken place on the fully exploited age groups. Since the foreign cod fishing fleet left Iceland grounds in 1976 and 1977 the effort gap has been filled up gradually to a great extent by an increase in the Iceland trawler fleet combined with introduction of more effective gill nets during the winter season fisheries which exploits mainly the spawning stock.

Comparison of the present exploitation pattern for cod and haddock shows that fish conservation measures in force bring the cod fisheries much more long term gain than haddock. The explanation for this is the mesh size in use. From codend selection experiments the 50% retention length which corresponds to the present minimum landing size of haddock (45 cm) is achieved by approximately 151 mm mesh size (Thorsteinsson 1980). It is estimated that 150 mm mesh size for haddock will give about 5% more longterm gain than the present mesh size. On the other hand the present mesh size is to small to achieve the optimal exploitation pattern for cod and mesh size of 165 mm would be more appropriate. By that mesh size the estimated immediate loss for haddock would be greater than the long term gain. As a management solution the Marine Research Institute therefore recommended 155 mm meshsize for both species. Box closures on the nursery grounds together with regulation were therefore introduced as additional conservation measures in improving the exploitation pattern for cod.

Conservation of any kind will always result in some immediate losses depending on which kind of management measures have been introduced. The immediate loss by increasing the mesh size from 135 mm to 155 mm for the Icelandic trawlers was estimated to be 6% by weight for cod. In spite of this no such losses were detected at all. Instead cod catch (kg) per hours fishing of the Icelandic trawlers increased during 1976-1979 as follows:

			1976	1977	1978	1979
Trawlers	> 500	GRT	603	679	651	724
17	< 500	GRT	734	855	768	922

A possible explanation for this is that during the same time changes in effort took place when the majority of the foreign fishing fleet which had been fishing at Iceland left Iceland grounds in 1976 and 1977. Also at this time the very successful 1973 year class recruited to the fisheries but calculations on immediate losses and long term gains were based on average recruitments values. Effects of improved yield per recruit for cod together with better recruitment and hence stock size have in almost every year since the meshes in trawl codend were increased resulted for all gears in further increase in catch per unit effort.

The estimated increase in the maximum yield per recruit is 14% for cod and 8% for haddock. Using average recruitment figures the yearly gain is about 55 thousand tons of cod and 5 thousand tons of haddock. It is obvious from the yield per recruit curves that this gain for cod will not be fully achieved except fishing effort would be reduced about 50% of the present level.

As already have been mentioned the final conservation gain is not yet fully known. No information on discards were available prior to 1977 but it is known that discarding took place

- 8 -

some years ago but the magnitude could never be estimated. The present mesh size, box closures together with other fishing regulations must have reduced discarding heavily. In recent years observations of fishery inspectors onboard the fishing vessels have shown that discarding of cod and haddock is almost neglible. This increase in survival of young fish which is outside the range of VPA technique will result in better recruitment and hence stock size if the natural mortality on this age groups is within a reasonable range.

It should also be noted here that in the calculations natural mortality coefficient of M = 0.2 has been assumed. If the natural mortality is actually lower the gain in protecting young fish is considerably higher than have been presented in this paper.

References

- Anon. 1975 Report on the International O-group fish survey in Icelandic and Greenland waters, in July-August 1975. ICES, C.M. 1975/H:35. (Mimeo)
- Anon. 1976 a. Report of the North-Western Working Group. ICES, C.M. 1976/H:39 (Mimeo).
- Anon. 1976 b. Report of the North-Western Working Group. ICES, C.M. 1976/F:6 (Mimeo)
- Pálsson, O.K. and S.A. Malmberg 1978. Investigations on demersal juvenile cod (Age groups O-IV) in Icelandic waters in 1977. ICES, C.M. 1978/G:20 (Mimeo).
- Thorsteinsson, G. 1980. Icelandic bottom trawl and Danish seine codend selection experiments on cod, haddock, redfish and plaice in 1972-1976. (Mimeo).

-- r--

Fishing mortality on age groups subject to maximum exploitation

Fishing mortality on age groups subject to maximum exploitation

Fig.4. Haddock. Spawning stock biomass per recruit curves for 1971-1975 and 1977-1979 exploitation patterns.

Table 1. Cod. Input catch in numbers for the VPA.

AGE	1960	1961	1962	1963	1964	1965	1966
3 4	13.434 30.544 38.000	14.664 19.971	12,309 28,867	14.884 29.298	16.284	22.039 30.535	16.957 30.039
	12.105	18.826	15,786	11.586	10,882	11.002	12.338
, 8 3	5,967	6.502	4.243	8.295	17,182	6.228	7.118
10	12.136	2.962	2.614	6.063	1.763	1.694	5.862
12	0.911	1.230	3,007	0.946	0.768	0.587	0.528
13	0.221 0.219	0.090	0.388	1.398	0.463 0.969	0.131 0.246	0.3/4 0.054
SUM 3- 6 SUM 7-14	85.083 38.308	73.141 28.341	76.680 32.460	78.158 38.462	76.068 37.111	85.138 30.580	79.125 22.718
TOTAL	123.391	101.482	109.140	116.620	113,179	115.718	101.841
AGE	1967	1968	1969	1970	1971	1972	1973
3 4	27.444 25.937	11.514 49.731	9,828 23,168	10.670 50.014	13.303 35.932	8.664 27.765	37.583
5 6	24,063	22.280	43,262	24.737 27.188	45,939	30.861	26.338
7	7.807	17.478	12.826	15.497	17.443	11.190	12.011
. 9	4.142	1.728	1.881	14.581	6.885	11.243	5.893
10	2.017	3+189 0+526	0.578	0.518	4.710	4.298	1.452
12 13	0.095	0.598	0.101	0.099 0.043	0.108	0.083	0.261
14	0.153	0.053	0.029	0.018	0.018	0.003	0.001
SUN 3- 6 SUN 7-14	18,371	29,266	33+387	42,995	118.449 41.915 150 744	38+727	105.571 31.089
AOF	1074700	1075	107/	100.004	+070	1070	100+000
HOE 3	14.211	29.522	24.140	2,611	4.879	7.585	
45	58.770 22.632	28,786 44,057	38.174 20.797	45.602 31.020	13.396 43.426	31.642 15.250	•
6 7	15.183	12,421	24,976	12.270	19,417 11,114	37.839 13.555	
8	6.140	4.202	6.962	3.129	5.556	4.254	
10	3,059	0.867	0,589	0.406	0,488	0.419	
11 12	2+162 0+293	1.146-0.466	0.240 0.159	0.164 0.025	0.149 0.058	0.179 0.042	
13	0,108	0,083	0.064	0.047	0.003	0.031	
SUM 3- 6	110,796	114,786	108.087	91.503	81.118	92,316	
SUM 7-14 TOTAL	23.138 133.934	20.113 134.899	14,796 122,883	21.054 112.557	18.441 99.559	19.979 112.295	

Table 2. Cod. Stock size in numbers from VPA.

AGE	1960	1961	1962	1963	1964	1965	1966
3	151.864	189.279 112.221	142,134	162,496	292,954	257.976	289,128 191,337
D 2	114+343	101+878	111 700	90+081 40 707	37.88U	72+240	100+833
0 7	44.073	07+001	114+/77	42+/7/	03+033	30.818	37+790
· /	00.002	20+022	38+411	77.707	24+030 20 ECC	34+122 17 AF7	10+3/4
о О	10 507	11 000	14+142	~~~~~~	47+000	13+400	17+808
10	TO+027.	. 11+070	A. A97	13.417	7+200		10 107
11	7.018	16.705	4.985	2.968	5.545	1.494	0.900
12	1.313	2.484	8.141	2.410	1.171	1.612	0.523
13	0,559	0.270	0.936	3,972	1.126	0,279	0.794
14	0,452	0.260	0.140	0.421	2.001	0.508	0.112
SUN 3- 6	542.111	530.940	472,578	400.643	526.086	586.189	677.093
SUM 7-14	138,180	104.237	98.221	131.029	97.265	79.793	53.162
TOTAL	680,291	635,177	570,800	531.672	623.351	665.982	730.255
AGE	1967	1968	1969	1970	1971	1972	1973
3	338.505	175,917	258.831	185.213	183.178	135.011	303.431
4	221,418	252.392	133.641	203.041	142,012	137,973	102.721
5	129,604	157,905	161.899	88,561	121.293	83,983	87.986
6	110.570	84.456	109,212	93.696	50,297	58.173	41.120
7	21.512	79.753	54.695	74.135	52.308	22.157	26.739
8	7.044	10.619	49.579	33.243	46.758	27.187	8.164
9	9.841	3,228	3,656	24.990	16,408	27.204	12.775
10	2+400	4.303	1.104	1.31/	7+3012	1.2//	12.21/
11	3+13/	0.791	0.213	0.100	0.142	1+700	2+140
17	0,178	0.135	0.114	0.085	0.067	0.037	0.077
14	0.316	0,109	0.030	0.037	0.031	0.005	0.002
SUM 3- 6	800.096	670.670	663,583	570.511	496.780	415.143	535.257
SUM 7-14	44.702	99.809	110.182	134.385	123.853	86.018	62,588
TOTAL	844.798	770.479	773.765	704.897	620.633	501.161	597.845
AGE	1974	1975	1976	1977	1978	1979	
3	158.425	228.333	337.099	105.381	239.837	367.919	
4	214.561	116.893	160.343	254,216	83.921	191.956	
5	61.096	122.892	69.836	96.967	167.091	56.646	
6	48,401	29.752	61.144	38.513	51.568	97.793	
7	19.302	26,008	13.251	27,718	20.526	24.834	
8	11+102	7.207	2 14304	0+838	8,78/	0+711	
10	5+401	3+0/4	1.044	0 740	J. • 7 7 2 0. 004	2+427 0 201	
11	3.044	1.537	0.307	0.331	0.245	0,291	
12	0.468	0.584	0.249	0.041	0.125	0.048	
13	0.156	0,123	0.069	0.033	0.011	0.050	
14	0.053	0.033	0.027	0.002	0.010	0.006	
SUM 3- 6	482,483	497.870	628,422	495.077	542,417	714.314	
SUM 7-14	42,843	40,478	28,468	37.849	32,782	35.270	
TOTAL	525.326	538.348	656.890	532,926	575.199	749.583	

- - -

`

•

.

Table 3. Cod. Stock biomass from VPA.

		1010	4 10 1 4	10/0	10/7	1074	1045	1022
	AGE.	1980	1981	1702	1703	1704	1700	1/00
				100 100	101 005	700 100	200 077	707 004
	3	170.088	211.992	159,190	181.990	328.108	208.700	- 323+024 - 770 - 000
	4	445.468	216.587	273.561	203.168	230.884	434.550	307+280
	5	333.883	472.683	215.799	263.037	174.850	210.940	457.901
	6	169.376	256.733	436.237	162.630	203.807	117,108	151.220
	7	258.315	119,143	178.611	370.924	114.551	158.669	71.490
	g	110.647	197.739	74.244	106.608	260.220	70.642	103.994
	ő	101.507	45.202	136.914	42.583	50.444	137,998	29,895
	10		54 007	70.055	80.405	24.014	17.660	61.284
	10	- 202+400 EA 707	110 045	75 700	01 710		10 177	4. AA1
	11	30.388	117+740	33.787	SI+910	40 4/4	4 8 7707	A 767
	12	11.725	22.178	/2./03	21.521	10.401	14.070	9+00/ 0 047
	13	6+232	3,009	10,431	44.203	12.549	3.109	8,843
	14	6.848	3.940	2.126	6.379	30.302	7.693	1.689
SUM	3- 6	1119.814	1157.996	1084.787	810.831	937.629	1051.530	1302.275
SUM	7-14	748.119	587.248	549.773	694.184	542.495	422,340	288.321
TOTA	1L.	1867.933	1745.244	1634.560	1505.015	1480,124	1473.870	1590.597
	AGE	1967	1968	1969	1970	1971	1972	1973
	,							
	. P	379,125	197.027	289.891	207.439	205.160	151.212	339.842
	a	A27.336	487.116	257.927	391.870	274.083	266.289	198,251
	177 171	770 447	441.094	472.745	258.598	354.175	245.238	256.919
	ີ ບຸ	3/0+443	701+007	41E 004	754 045	101.170	221.058	154.254
	<u>ڻ</u>	420+167	320.733	410.008	300.040	1714147	407 000	100+200
	7	100.032	370,849	254.285	344.729	240+200	103+027	124+00/
	8	36,979	55.751	260.292	174.527	245.482	142.732	42,880
	- 9	53.927	17.688	20.036	136.946	89.919	149.077	70.005
	10	14.456	26.162	6.634	7.915	45,089	43.737	73.422
	11	22,524	5,961	5.531	2.791	4.426	14,113	15.364
	12	2.405	6.976	1.906	1.693	1.446	1.650	4.240
	13	1.979	1.509	1.269	0.942	0.746	0.412	0.859
	14	4.784	1.657	0.907	0.563	0.468	0.078	0.026
CHM	X	1605.071	1466.159	1435.568	1213.951	1024.546	883.797	951,268
CHM	714	277.088	494.553	550,859	670.105	630.806	454.829	331.114
- 0011 - TOTA	2 I.M. M	10/0 150	1050.717	1994.427	1884.057	1655.352	1338.626	1282.382
TUTE	1	1042+107	1.702.474.0	1,2004-122	10011007			
	A.C.C.	1074	1075	1074	1977	1978	1979	
	HUC	177**	1770					
		1	OFE 777	777 551	110.007	249.417	412.049	
	ు	1//+430	200+700	377+331	110+027	1/1 0/0	770 475	
	. 4	414.102	225.603	309+462	490.038	101+705	3/0+4/3	
	5	178,400	358.846	203.921	283.143	487,906	165,408	
	6	183.925	113.057	232.349	146.349	195.959	371.612	
	7	89.755	120,936	61.615	128,890	95.447	115.476	
	8	58.601	37.835	59.607	30.640	47.183	36,282	
	9	18,965	20.135	11.870	17,083	10,916	13.309	
	10	31.232	7,889	6.276	4.450	5.323	4.091	
	11	21.853	11.034	2.206	2.377	1.758	2.088	
	17	4.179	5.212	2.224	0.364	1.114	0.609	
	شد 177	1.747	1.777	0.777	0.703	0.125	0.561	
	С.L А.Р		A 0/0	0.114	0.024	0.154	0.098	
			V+474 057 070	1107 000	1070 154	1110.450	1319.543	
SUM	<u>ుా ద</u>	703,803	703+238	1120+202	100 100	140 000	170.514	
SUM	/-14	22/+132	204.909	144+988	184.034	102+V22	1/2+010	
TOTA	4L	1180.996	1158.147	1268.271	1222+690	12/6+4/2	1472+079	

.

Table 4. Cod. Fishing mortalities from VPA.

AGE	1960	1961	1962	1963	1964	1965	1966
3	0.103	0.089	0.100	0.106	0.063	0.099	0.067
4	0.157	0.218	0.253	0.364	0.304	0.162	0.190
5	0.326	0.144	0.346	0.319	0.464	0.396	0,150
0 77	0+304	0.300	0 477	0.002	0.202	0.490	0+410
6	0+107	0+334	0 700	0.270	0+403	0.344	0.081
8	0.372	0.210	0.377	0.391	0+4/7	0.703	0.300
10	0.480	0.407	V+422 0 501	0.400	0.257	0+704	0.017
10	0.070	V+427 A E10	0+001	0.000	1 070	0 077	1 004
1.7	4 701	0+017	0+027	0+730	1 075	0.777	1+000
1	1.001	0.770	V+318	0.001	1+230	0.008	0.879
13	0.000	0,404	0.350	0.480	0.098	0.717	0.721
14	0.750	0+750	0.750	0.750	0./50	0.750	0.750
AVERAGE	WEIGHTED	BY STOCK	IN NUMBERS	3			
AVE 7-13	0.379	0.361	0.450	0.400	0.554	0.561	0.643
AVE 4-12	0.268	0.247	0.290	0,363	0.397	0,306	0.249
AGE	1967	1968	1969	/ 1970	1971	1972	1973
3	0.094	0.075	0.043	0.066	0.083	0.073	0.147
4	0.138	0.244	0.211	0.315	0.325	0.250	0.320
	0.228	0.169	0.347	0.366	0.535	0.514	0.398
6	0,127	0.235	0.187	0.383	0.620	0,577	0.556
7	0.506	0.275	0.298	0.261	0.454	0.798	0.674
8	0.580	0.866	0.485	0.506	0.342	0.555	0.658
9	0.616	0.873	0.821	1.003	0.613	0.601	0.699
10	0.864	1.532	0.844	0.559	1,139	1.024	1,190
11	1.190	1.158	1.202	0.676	1.005	1,221	1,320
12	0.488	1.726	0.726	0.840	1,276	0.674	0.910
13	0.284	0.616	0.919	0.807	2.365	2,871	0.171
14	0.750	0.750	0.750	0.750	1.000	1.000	1,000
AUEPAGE	NETGUTED	BY STOCK	TN NUMBER	2			
AUE 7-13	0.409	0.432	0.413	0.445	0.479	0.488	0.801
AUE 4-12	0,200	0.254	0.292	0.375	0.461	0.445	0.478
			to V du Y du	010.0	ov icia	01100	01170
AGE	1974	1975	1976	1977	1978	1979	
3	0.104	0.153	0.082	0.028	0.023	0.023	
4	0.357	0.315	0.303	0.220	0.193	0,200	
5	0.520	0.498	0.395	0.431	0.336	0.350	
6	0.421	0.609	0.591	0,429	0.531	0.550	
7	0.785	0.629	0.620	0.926	0.889	0.900	
8	0,911	1.002	1.093	0.875	1.108	1.100	
9	0.769	1.058	0.873	1.058	0.874	1.100	
10	1.018	1.252	0.949	0,906	0.914	1.100	
11	1,451	1.619	1.819	0.776	1.078	1.100	
12	1.134	1.930	1.173	1.091	0,707	1.100	
13	1.367	1.301	3.499	1.613	0.347	1.100	
14	T+000l	1,000	1,000	1.000	1,000	1.100	
AVERAGE	WEIGHTED	BY STOCK	IN NUMBERS	3			
AVE 7-13	0.898	0.813	0.865	0,929	0.949	0,959	
AVE 4-12	0.455	0.480	0.428	0.345	0,390	0.382	

•

Table 5. Haddock. Input catch in numbers for the VPA.

AGE	1962	1963	1964	1965	1966	1967	1968
2	4,282	3,833	4,170	2,490	1,380	3,375	2+681
3	6.683	18,005	27.409	25.817	13.802	18.613	7.153
4	14,920	5.447	14.125	17,820	13.192	16.002	10.239
5	45.797	10.401	4.133	17.999	4.885	4.790	5.079
6	9.975	25.018	4.097	1.857	5.308	1.308	2.522
7	0,840	5,301	9.517	1.364	0.696	1,617	1,571
8	0.067	0.464	2,198	2,460	0.488	0.161	1.173
9	0,193	0.036	0.234	0.437	0.547	0.050	0.237
SUM 2- 3	10.965	21.838	31.579	28,307	15.182	21,988	9.834
SUM 4- 9	71.792	46.667	34.304	41.937	25.116	23.928	20.821
TOTAL	82,757	68.505	65.883	70.244	40+298	45.916	30.655
AGE	1969	1970	1971	1972	1973	1974	1975
2	1.893	0,908	0+486	2,301	2,463	1.078	0.581
3	9.624	4.220	4.613	4.431	9.634	3,565	6.732
4	5.522	11.095	5.794	9,386	4.922	11.641	8.395
5	7.757	3.867	۶،026	4.527	4.512	4.625	7.528
6	1.450	4.093	3,431	2.321	2.599	2.180	1.614
7	0.611	1.015	1.951	0,381	1.614	0,736	0.764
8	0.359	0.347	0.302	0.207	0.470	0.421	0.156
9	0.485	0.321	0.055	0.041	0.290	0.084	0.091
SUM 2- 3	11.517	5,128	5.099	6.732	12.097	4.643	7.313
SUM 4- 9	16.184	20.738	20.559	16.863	14.407	19.687	18,548
TOTAL	27.701	25.866	25+658	23,595	26,504	24.330	25,861
AGE	1976	1977	1978	1979			
2	1.004	0.061	0.108	0.161			
3	7.808	1.515	0.579	2.066			
4	8.689	8.655	2.132	4.074			
5	5.481	6.472	7.188	6.559			
6	3.131	2.632	4.481	9.769			
7	0.493	1.342	1.821	1.887			
8	0.149	0.247	0.627	0.474			
9	0.055	0.122	0.094	0.061			
SUM 2- 3	8.812	1.576	0.687	2.227			
SUM 4- 9	17,998	19.470	16.343	22.824			
TOTAL	26.810	21.046	17.030	25.051			

ς.

Table 6. Haddock. Stock size in numbers from VPA.

•							
AGE	1962	1963	1964	1965	1966	1967	1968
2	113,903	91.459	79.637	65.227	77.613	41.878	64.597
3	28.931	89.391	71.421	61.438	51.155	62.298	31.243
4	40.950	17.679	56,990	33,937	27.215	29.487	34.302
5	106.108	20.162	9.587	33.967	11.910	10,512	9,896
5	23.214	45,936	7.238	4.155	11.778	5.381	4.328
7	2.294	10.089	15.339	2,282	1.743	4.901	3.230
. 9	0.168	1.126	3.538	4,116	0.657	0.804	2.563
9	0.418	0.078	0.507	0.947	1.185	0.108	0.513
SUM 2- 3	142.835	180,850	151.058	126.665	128.769	104.177	95.840
SUM 4- 9	173,153	95.071	93.200	79.404	54.488	51.194	54.833
TOTAL	315,988	275.921	244.258	206.069	183,257	155.370	150.673
AGE	1969	1970	1971	1972	1973	1974	1975
2	35,715	40.615	30,801	63.763	47.344	59.362	86.828
. 3	50.467	27.533	32,433	24.779	50.128	36.540	47.628
4	19.149	327659	18.741	22.398	16.299	32,373	26.702
5	18,896	10.721	16.794	10.146	9.945	8,928	16.075
6	3.576	8.532	5.313	5.712	4.262	4.112	3,188
7	1.302	1.630	3,333	1.310	2.601	1.183	1,425
8	1.243	0.521	0.434	0.995	0.731	0.697	0.315
9	1.051	0.695	0.119	0.089	0.628	0.182	0.197
SUM 2- 3	86.182	68.147	63.233	88.542	97.472	95.902	134.457
SUM 4- 9	45.216	54,759	44.735	40.651	34.465	47.474	47.902
TOTAL	131.398	122,906	107.968	129.193	131.938	143.376	182.359
AGE	1976	1977	1978	1979			·
2	39,887	37.718	140.678	118.510			
3	70.564	31.750	30.825	115.079			
4	32,931	50,735	24.628	24.715			
5	14,331	19.157	33.747	18.241			
6	6.441	6.826	9,882	21.165			
7	1.171	2.480	3.233	4.088			
8	0.486	0.518	0.835	1.027			
9	0.119	0.264	0.204	0.132			
SUM 2- 3	110.451	69.468	171.504	233.589	•		
SUM 4- 9	55.479	79.980	72.529	69.368			
TOTAL	165.930	149.448	244.032	302.958			

Table 7.

7. Haddock. Stock biomass from VPA.

AGE 1962 1963 1964 1965 1966 1967 1968 2 70.620 56.705 49.375 40.441 48.120 25.965 40.050 3 27.774 85.815 68.564 58,981 49.109 59.806 29.993 4 57.739 24.928 80.356 47.851 38.374 41.577 48,366 5 215.399 40.929 19.463 68.953 24.177 21.339 20.090 6 67.554 133.675 21.063 12.091 34.274 15.659 12.594 7 38.339 8,719 58.289 8.673 6.623 18,625 12.275 8 0.758 5,135 16.133 18.769 2.997 3.667 11.687 9 1.974 0.368 2,393 4.469 5.594 0.511 2.424 SUM 2-- 3 98.394 142.520 117.939 99.421 97.230 85,771 70.043 SUM 4- 9 352.153 243.374 197.696 160,805 112.038 101.377 107.436 TOTAL 450.547 385.894 315.635 260.227 209.267 187.148 177.479 AGE 1969 1970 1971 1972 1973 1974 1975 2 22.143 25.181 19.096 39.533 29.354 36.805 53.834 3 48.449 26.431 31.135 23.787 48.123 35.078 45.723 Ą 27,000 46.050 26.425 31.581 22,981 45.645 37.650 5 38.358 21.764 34.091 20.596 20.188 18.123 32.633 10.405 24.827 6 15.462 16.623 12.403 11.965 9.277 7 4,948 6.195 12.664 4,980 9.882 4.494 5.414 8 5.668 2.374 1.981 4.536 3.333 3.180 1.439 3.283 9 4.960 0.562 0.419 2,966 0.859 0.931 SUM 2- 3 70.592 51.612 50.232 63.321 77.476 71.883 99.557 SUM 4- 9 91.339 104.492 91.185 78.737 71.753 84.267 87.343 TOTAL 161.931 156.105 141.417 142.057 149.229 156.150 186.899 1976 AGE 1977 1978 1979 2 24,730 23.385 87.221 73.476 3 67.742 30,480 29.592 110.476 4 46.432 71.537 34.725 34.848 5 29.092 38.888 68.507 37.028 18.742 19.864 6 28.757 61.591 7 4.450 9.423 12.284 15.536 2.217 8 2.362 3.810 4.683 Ÿ 0.562 1.248 0.961 0.624 SUM 2-3 92.472 53.865 116.813 183.952 SUM 4-9 101,496 143.321 149.044 154.310 TOTAL 193.967 197.186 265.857 338.262

.

Table 8. Haddock. Fishing mortalities from VPA.

	AGE	1962	1963	1964	1965	1966	1967	1968
	2	0.042	0.047	0.059	0.043	0.020	0.093	0.047
	3	0.293	0.250	0.544	0.614	0.351	0.397	0,290
	4	0.509	0.412	0.317	0.847	0.751	0.892	0.396
	5	0.637	0.824	0.636	0.859	0.594	0.687	0.818
	6 	0.633	0.897	0.954	0.669	0.677	0.310	1.001
	~	0,512	0.848	1+115	1.045	0.5/4	0.448	0./55
	8	0.570	0.378	1.118	1.040	1.603	0.248	0+692
	7	0.700	0.700	0+700	0.700	0.700	0.700	0+700
AVI	ERAGE	WEIGHTED	BY STOCK	IN NUMBERS				
AVE	4- 8	0.604	0.782	0.563	0.859	0.704	0.736	0.557
AVE	3- 8	0.560	0.524	0.555	0.752	0.531	0.550	0.459
	AGE	1969	1970	1971	1972	1973	1974	1975
	-	~ ~ ~ ~	A A95	0.010	A A44	0 050	A A9A	A AA7
	یند جو	0.000	0.105	0.018	0+041	0.037	0.020	0.007
	3 4	0+200	0.185	0.170	0 410	0.400	0+114	0.187
	**	0.380	0.400	0.070	0.012	0.402	0.070	0.4422
	0 2	0.070	0.002	1 200	0+007 A 507	1 000	0.020	0.001
	0 7	0.000	1 1 2 7	1 000	0.007	1 114	1 1 2 1	0.075
	0	0 701	1 075	1.797	0.240	1,100	1.04%	0.774
	0 0	0.700	0.700	0.700	0.700	0.700	0.700	0.700
	,	0.,,00	01/00	04700			01700	
AVE	ERAGE	WEIGHTED	BY STOCK	IN NUMBERS				
AVE	4- 8	0.499	0.543	0.736	0.606	0.642	0.617	0,562
AVE	3- 8	0.358	0.422	0.498	0.459	0.400	0.398	0.366
	AGE	1976	1977	1978	1979			
	2	0.028	0.002	0.001	0.002			
	3	0.130	0.054	0.021	0.020			
	4	0.342	0,208	0.100	0.200			
	5	0.542	0.462	0.267	0.500			
	6	0.754	0.547	0.683	0.700			
	7	0.616	0.888	0.947	0.700			
	8	0.409	0.734	1.644	0.700			
	9	0.700	0.700	0.700	0.700			
ALI	TRACE	Истоитст	RY GTOCK	TN NUMBERS				
AUE	A- 9	0.448	0.322	0.313	0.469			
AUE	3-8	0.270	0.246	0.226	0.189			